Data-driven and hypothesis-driven research in (Semantic) Systems Biology

Erick Antezana

Dept. of Plant Systems Biology
Flanders Institute for Biotechnology (VIB) / Ghent University
Ghent - BELGIUM
erant@psb.ugent.be

Contents

- 1. Systems Biology
- 2. Data/hypothesis-driven approaches
- 3. Data integration and exploitation
- 4. The Cell-Cycle Ontology
- 5. BioGateway
- 6. Concluding remarks

Systems Biology

- Yet another definition
- Key: system
- What is a system?
- System =
 - set of elements,
 - dynamically interrelated,
 - having an activity,
 - to reach an objective (sub-aims),
 - INPUT: data/energy/matter
 - OUTPUT: information/energy/matter

Systems Biology (cont)

- "A system (and its properties) cannot be described in terms of their terms in isolation; its comprehension emerges when studied globally"
- Systems Biology = Approach to study biological systems.
- Arbitrary borders
- A system within a system

Systems Biology (cont)

- Types of systems biology:
 - "Standard/Classical" Systems Biology (Kitano, Science 2002. Sauer et al, Science 2007.)
 - Translational Systems Biology (Vodovotz, PLoS Comp Biol 2008.)
 - Semantic Systems Biology (Our proposed paradigm)

Semantic Systems Biology

- Semantic?
 - New emerging technologies for analyzing data and formalizing knowledge extracted from it
- A new paradigm elements:
 - Knowledge representation
 - Reasoning ==> hypothesis
 - Querying

Systems biology paradigm

top-down and bottom-up modeling

top-down data driven

bottom-up hypothesis driven

Biological Process

Genome-scale functional genomics data

Predictive mathematical model

Statistics Mining

Knowledge Mathematics

Knowledge Management

Information extraction Knowledge formalization

Consistency checking Querying Automated reasoning

Semantic Systems Biology Cycle

Experimentation Data generation

Hypothesis formulation Experimental design

In practice

- A knowledge base for cell cycle elucidation:
 - http://www.cellcycleontology.org
- "BioGateway": an integrative approach for supporting semantic systems biology
 - http://www.semantic-systems-biology.org/

(Some) Motivating questions

- I'm working with AT5g35520, in which interactions does this gene play a role?
- From my microarray experiment I've got this gene X, is this gene involved in the cell cycle, ...,?
- Verify my models of genetic, metabolic and product interaction networks

• ...

Background

- Amount of data generated in biological experiments continues to grow exponentially
- Shortage of proper approaches or tools for analyzing this data has created a gap between raw data and knowledge
- Lack of a structured documentation of knowledge leaves much of the data extracted from these raw data unused
- Differences in the technical languages used (synonymy and polysemy) have complicated the analysis and interpretation of the data

The Cell-Cycle Ontology

- Capture the knowledge of the CC process
- dynamic aspects of terms and their interrelations
- promote sharing, reuse and enable better computational integration with existing resources
- Issues: synonymy, polysemy

ORGANISMS:

"Cyclin B (what) is located in Cytoplasm (where) during Interphase (when)"

http://www.CellCycleOntology.org

Knowledge representation

- Why OBO?
 - "Human readable"
 - Standard
 - Tools (e.g. OBOEdit)
 - http://obo.sourceforge.net
- Why OWL?
 - Web Ontology Language
 - "Computer readable"
 - Reasoning capabilities vs. computational cost ratio
 - Formal foundation (Description Logics: http://dl.kr.org/
 - http://www.w3c.org/TR/2004/REC-owl-features-20040210
 - Reasoning: RACER, Pellet, FaCT++

CCO Pipeline

- ontology integration
- format mapping
- data integration
- data annotation
- consistency checking
- maintenance
- data annotation
- semantic improvement: OPPL
- ODP (BMC BioInf in press)

ULO

CCO accession number CCO:[CPFRTIBGOU]nnnnnn

sub-namespace

7 digits

C: cellular component

P: biological process

F: molecular function

R: reference

T: taxon

I: interaction

B: protein

G: gene

O: ortholog

U: upper-level term

•Examples in CCO:

CCO: P0000056 ← "cell cycle"

CCO: B0000046 ← "CYCA3;2"

•In other ontologies:

OBO REL: has participant

Sample entry in OBO

[Term]

id: CCO:B0002060 name: NEB2 HUMAN

def: "Neurabin-2" [UniProt:Q96SB3]

synonym: "Neurabin-II" EXACT [UniProt:Q96SB3]

xref: UniProt:Q8TCR9

is a: CCO:B0000000 ! core cell cycle protein

relationship: belongs_to CCO:T0000004 ! Homo sapiens organism

relationship: encoded_by CCO:G0005171 ! PPP1R9B_human

relationship: participates_in CCO:l0006401 ! aah62584-q96sb3 physical interaction relationship: transforms_into CCO:B0013139 ! NEB2_HUMAN-Phosphoserine15

OBO2OWL Mapping: http://www.bioontology.org/wiki/index.php/OboInOwl:Main_Page **Tool:** ONTO-PERL (*Antezana et al. Bioinformatics 2008*)

Some figures

	Ontology				
Entity	$\mathbf{A}\mathbf{t}$	$_{ m Hs}$	\mathbf{Sc}	\mathbf{Sp}	CCO
Proteins	252	5829	7069	930	24541
Genes	222	1806	3148	852	6028
Interactions	76	2394	5162	399	8031
Orthology groups					1649

CCO is the composite ontology = At + Hs + Sc + Sp + orthology

2008-03-07: 49226 terms in CCO

Current knowledge

Knowledge exploration

- Looking up:
 - Terms,
 - Synonyms,
 - **—** ...
- Visual browsing
 - "local neighborhood"
 - Path to the root
- Advanced Querying (e.g. SPARQL)

CCO in: visANT

Home Sign In Register Help▼

Cell Cycle Ontology (A. thaliana)

http://www.bioontology.org/ncbo/faces/pages/ontology_list.xhtml

Advanced Querying

- RDF = Resource Description Framework
 - Metadata model: elements = resources
- It allows expressing knowledge about web resources in statements made of triples (basic information unit):

RDF Triples

- Subject corresponds to the main entity that needs to be described.
- Predicate denotes a quality or aspect of the relation between the Subject and Object.
- "The protein DEL1 is located in the nucleus"

SPARQL*

- Language which allows querying RDF models (graphs)
- Powerful, flexible
- Its syntax is similar to the one of SQL.
- Virtuoso Open Server
 - SPARQL queries
 - DB backend

http://www.openlinksw.com/virtuoso/

— ...

Matching triples

?protein sp:is_a sp:CCO_B0000000 . ?protein rdfs:label ?protein_label

prot_name	biological_process_name
UBC11_SCHPO	G2%2FM transition of mitotic cell cycle
UBC11_SCHPO	cell cycle
UBC11_SCHPO	mitosis
UBC11_SCHPO	mitotic metaphase%2Fanaphase transition
UBC11_SCHPO	regulation of mitotic cell cycle
UBC11_SCHPO	cyclin catabolic process
SRW1_SCHPO	cell cycle
SRW1_SCHPO	cyclin catabolic process
SRW1_SCHPO	activation of anaphase-promoting complex during mitotic cell cycle
SRW1_SCHPO	cell cycle arrest in response to nitrogen starvation
SRW1_SCHPO	negative regulation of cyclin-dependent protein kinase activity
DYHC_SCHPO	dhc1-peg1-1 physical interaction
DYHC_SCHPO	synapsis
DYHC_SCHPO	meiotic recombination
DYHC_SCHPO	horsetail nuclear movement
ORB6_SCHPO	cell morphogenesis checkpoint
ORB6_SCHPO	regulation of cell cycle
DED1_SCHPO	G2%2FM transition of mitotic cell cycle

Reasoning over CCO

- Consistency checking: no contradictory facts
- Classification: implicit2explicit knowledge
- Querying (OWL-DL)

OWL

- Web ontology language
- OWL-DL: balance tractability with expressivity
- Open World Assumption
 - "what is not stated is not false, it is unknown"
 - Fits in Biology
- Tools:
 - Protégé (http://protégé.stanford.edu)
 - Reasoners (RACERPRO, Pellet, etc)

Cellular localization checks

 Query: "If a protein is cell cycle regulated, it must not be located in the chloroplast (IDEM: mitochondria)" (RACER*)

OWL restrictions

Restriction on Nucleus: some part_of Cell

Necessary conditions vs Necessary and sufficient conditions

Sample query in OWL (1)

- Which cell cycle related proteins participate in a reported interaction?
 CCO_U0000005 and participates_in some CCO_Y0000001
- CCO_U0000005 = class of proteins
- CCO_Y0000001 = interactions

Sample query in OWL (2)

 Entities that are the location of proteins participating in the S-phase (cco_P0000014) or any process which is part of it.?

```
location_of some (
   participates_in some (
   CCO_P0000014 or (
   part_of some CCO_P0000014)))
```


The whole system

Current issues

- Temporal & spatial representation
 - OBOF not enough…
- Performance (reasoners)
 - Huge ontologies
- Weighted knowledge (often, sometimes)

Conclusions / Results

- Data integration pipeline: life cycle of the KB
- Existing integration obstacles due to:
 - diversity of data formats
 - lack of formalization approaches
- Reasoning services: inconsistency checks, classification => hypothesis
- Trade-offs: complex queries, representational issues

Future perspectives

- Extend CCO to entire GO tree
- Virtuoso covering the entire domain of biology ("RDF-ing"):
 - Entire OBO foundry
 - UniProt
 - MeSH (articles)

— ...

Acknowledgements

- Martin Kuiper (U Ghent/VIB)
- Vladimir Mironov (U Ghent/VIB)
- Mikel Egaña (U Manchester)
- Robert Stevens (U Manchester)
- Ward Blonde (U Ghent)
- Bernard De Baets (U Ghent)
- CCO Users

Extra slides

Sample entry in OWL

```
<owl:Class rdf:about="http://www.cellcycleontology.org/ontology/owl/CCO#CCO B0002060">
    <rdfs:label xml:lang="en">NEB2 HUMAN</rdfs:label>
    <obolinOwl:hasDefinition>
         <obolinOwl:Definition>
             <rdfs:label xml:lang="en">Neurabin-2</rdfs:label>
             <obolinOwl:hasDbXref>
                  <obolinOwl:DbXref>
                       <rdfs:label>UniProt:Q96SB3</rdfs:label>
                       <obolnOwl:hasURI rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
                         http://www.cellcvcleontology.org/ontology/owl/UniProt#UniProt Q96SB3
                       </obolnOwl:hasURI>
                  </obolnOwl·DbXref>
             </obolnOwl:hasDbXref>
         </obolnOwl:Definition>
    </obolnOwl:hasDefinition>
    <obolnOwl:hasDbXref>
         <obolinOwl:DbXref>
             <rdfs:label>UniProt:Q8TCR9</rdfs:label>
             <obolnOwl:hasURI rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
                http://www.cellcycleontology.org/ontology/owl/UniProt#UniProt Q8TCR9
             </obolnOwl·hasURI>
         </obolnOwl:DbXref>
    </obolnOwl:hasDbXref>
    <rdfs:subClassOf
rdf:resource="http://www.cellcycleontology.org/ontology/owl/CCO#CCO B0000000"/>
    <rdfs:subClassOf>
         <owl: Restriction>
             <owl>owl:onProperty>
                  <owl:ObjectProperty rdf:about=</pre>
                  "http://www.cellcycleontology.org/ontology/owl/CCO#belongs to"/>
             </owl>
```

Users

 Molecular biologist: interacting components, events, roles that each component play. Hypothesis evaluation.

 Bioinformatician/Computational Systems Biologist: data integration, annotation, modeling and simulation.

 General audience: educational purposes.

CCO in: Cytoscape

OPPL in CCO

```
# Add a class called "interaction".
# Add the following neccesary condition to the newly added "interaction" class:
# the participants are only the union of protein_1 and protein_2.
# Add the rdfs:label "interaction" to the newly added "interaction" class.
ADD Class interaction:
ADD subClassOf has_participant only (protein_1 or protein_2);
ADD label "interaction":
# Select any class that has the following condition as a superclass:
# the participants are only the union of protein 1 and protein 2.
# Remove the rdfs:label "interaction" from any selected class.
# Add the rdfs:label "interaction of protein 1 and protein 2" to any selected class.
SELECT subClassOf has participant only (protein 1 or protein 2);
REMOVE label "interaction":
ADD label "interaction of protein 1 and protein 2";
```