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and the consequences for plant evolution
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Genome sequencing has demonstrated that besides frequent small-scale

duplications, large-scale duplication events such as whole genome dupli-

cations (WGDs) are found on many branches of the evolutionary tree of

life. Especially in the plant lineage, there is evidence for recurrent WGDs,

and the ancestor of all angiosperms was in fact most likely a polyploid species.

The number of WGDs found in sequenced plant genomes allows us to inves-

tigate questions about the roles of WGDs that were hitherto impossible to

address. An intriguing observation is that many plant WGDs seem associated

with periods of increased environmental stress and/or fluctuations, a trend

that is evident for both present-day polyploids and palaeopolyploids

formed around the Cretaceous–Palaeogene (K–Pg) extinction at 66 Ma.

Here, we revisit the WGDs in plants that mark the K–Pg boundary, and

discuss some specific examples of biological innovations and/or diversifica-

tions that may be linked to these WGDs. We review evidence for the

processes that could have contributed to increased polyploid establishment

at the K–Pg boundary, and discuss the implications on subsequent plant

evolution in the Cenozoic.
1. Introduction
Flowering plants typically have large genome sizes and contain many genes,

the majority of which evolved during the past 250–300 Myr through gene

duplication [1]. A particularly striking feature of plant genomes, also explaining

their large sizes, is the large number of whole genome duplications (WGDs)

that have been uncovered [2–4]. It is now commonly accepted that one WGD

occurred in the ancestor of all seed plants, and an extra one in the ancestor of

all flowering plants, so that every extant angiosperm is in fact a palaeopoly-

ploid containing the remnants of at least two WGDs [5]. Furthermore, a

hexaploidy event pre-dates the origin of all core eudicots, which make up

approximately 75% of extant angiosperm diversity [6–8], whereas traces of a

WGD at the base of the monocots also suggest a WGD shared by most, if not

all, monocots [9]. In addition, several more recent independent WGDs have

been unveiled in many different plant lineages. As a result, the genomes of

some extant plant species carry the remains of up to six successive genome

duplications [10]. Here, we focus on the more ‘recent’ palaeopolyploidizations

that occurred in the past 100 Myr, a large fraction of which seemingly took place

around the Cretaceous–Palaeogene (K–Pg) extinction event at 66 Ma [11]. We

have an in-depth look at this wave of WGDs associated with the K–Pg boundary,

many of which pre-date lineage diversifications that resulted in some of the largest

and arguably most successful present-day plant families, often characterized by

particular biological innovations. Finally, we review processes that can explain

these observations, and discuss how these palaeopolyploidizations could have

influenced plant evolution in the Cenozoic.
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2. A burst of genome duplications at the
Cretaceous – Palaeogene boundary

In 2009, we described a tentative link between many of the

known palaeopolyploidization events in plants and the K–Pg

boundary, and speculated that WGD was linked to plant survi-

val around that time [11]. Although many found this an

interesting hypothesis [12], most remained sceptical, in particu-

lar because of the limited amount of data available at that time,

and because dating ancient events that occurred tens of millions

of years ago is often problematic. Only six complete genome

sequences and a few transcriptome assemblies were available

for analysis in 2009, limiting both the taxon sampling and possi-

bility to implement proper primary fossil calibrations. Dating

was performed using a penalized-likelihood inference method

that incorporates an autocorrelated relaxed clock model,

which assumes that branches that share a direct common ances-

tor also share similar evolutionary rates [13]. This assumption

seems unlikely however, in the light of the sparse taxon

sampling considered [14], and violation thereof may lead to

inconsistent age estimates [15]. Calibrations were typically

implemented as fixed secondary point calibrations, which

may lead to illusionary precision of the time estimates [16].

Recent years have seen a huge increase in plant (whole

genome) sequence data [17], in addition to the development of

more powerful Bayesian methods for sequence divergence esti-

mation [18–20], as well as more powerful high-performance

computing systems that allow such intensive Bayesian algor-

ithms to be run on a massive scale. We therefore recently

revisited the hypothesized link between the K–Pg mass extinc-

tion and successful WGDs [21]. We used plant genome

sequence information from a total of 41 species representing a

broad coverage of the overall angiosperm phylogeny, incorpor-

ating 38 full genome sequences and three transcriptome

assemblies, greatly improving taxon sampling with respect to

the previous study [11]. In total, 20 independent WGDs could

be dated compared with nine previously by dating all their

identifiable homeologues created by the WGD event. For

WGDs for which genome sequence information was available

for several descendant species (e.g. WGDs preceding the diver-

gence of Solanaceae, Fabaceae or Poaceae—see further), this

WGD was dated independently for each species to assess their

individual age estimates. Absolute age distributions were then

constructed for each species WGD, for which a consensus

WGD age estimate was obtained by taking the mode of its

kernel density estimate, which is more flexible in comparison

with traditional parametric distributions because it allows a

better exploration of the true underlying shape of the distri-

bution [22], whereas 90% confidence intervals were obtained

through a bootstrapping procedure [23]. Dating itself was car-

ried out with the BEAST package [20], using an uncorrelated

relaxed clock model that assumes a lognormal distribution on

evolutionary rates [19], and therefore should be better equipped

to deal with rate shifts between different branches compared

with autocorrelated relaxed clocks when taxon sampling is lim-

ited [24]. Proper calibration priors in Bayesian time estimation

are of paramount importance as they can have a profound

impact on the posterior age estimates [15,25–28]. Primary

fossil calibrations were implemented as flexible lognormal cali-

bration priors that represent the error associated with the age

of the fossil in a more intuitive manner [27,29]. Fossils have a

hard minimum bound corresponding to the earliest age to
which the fossil can reliably be attributed to. The peak mass

probability can be put at some distance after this earliest age to

accommodate for the lag between first fossil occurrence and

the actual divergence event the fossil is used to describe.

Lastly, the lognormal distribution has an infinite extending,

but small probability tail that can be used as a soft maximum

bound to account for the uncertainty associated with choosing

proper maximum bounds for fossil calibrations. More detailed

information can be found in Vanneste et al. [21].

An updated overview of palaeopolyploidizations is

summarized in figure 1 [21]. Although dating of such ancient

events surely remains a challenging exercise, and WGD dates

are subjected to change as more plant sequence data and power-

ful dating methods become available [12,30,31], many plant

palaeopolyploidizations were again found to cluster at the

K–Pg boundary [21], supporting our previous observations [11].
3. Implications of genome duplications
associated with the Cretaceous – Palaeogene
boundary

The increased long-term survival of WGDs around the K–Pg

boundary appears indicative of enhanced polyploid plant

establishment at that time, either because WGDs provided a

selective advantage for polyploids compared with their diploid

progenitors, or alternatively, because the cataclysmic events

that took place 66 Ma were responsible for the production of

an excess of polyploids (see further). However, whether

cause or effect, many of these WGDs pre-date the radiation

of some very large and successful plant families with particular

biological innovations. Similar observations can be done in

other parts of the tree of life, where WGDs are often found

at branches leading to species-rich clades, such as more than

25 000 species of teleost fishes and more than 350 000 species

of flowering plants [3,32]. On the other hand, one should be

cautious not to over-interpret the importance of WGDs for

species radiations. For instance, in vertebrates, it was suggested

that the often-quoted correlation between the teleost fish WGD

and increased post-WGD diversity and/or complexity does

not hold when extinct basal lineages were considered [33]. Tel-

eost fish evolution rather fits a more nuanced pattern of

reduced extinction risk after WGD, resulting in a lag period

between WGD and its effect on species diversity and/or com-

plexity [34]. Additionally, it was recently demonstrated that an

extended period of about 40–50 Myr passed between the sal-

monid-specific WGD and strong lineage diversification,

suggesting the latter was probably mostly driven by climatic

factors [35]. Below, we first examine a few examples of biologi-

cal innovations (or better said, elaborations thereof [2]) that can

reliably be traced back to WGDs located at the K–Pg boundary

in plants, focusing on fleshy fruits in the Solanaceae and

advanced nodulation characteristics in the papilionoids,

before taking a deeper look at evidence whether or not these

WGDs could have directly enhanced speciation.
(a) Biological novelty
(i) Fleshy fruits
The fleshy fruits observed in some plant lineages are an

important biological innovation that serves to enhance seed

http://rstb.royalsocietypublishing.org/
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Figure 1. A wave of WGDs is associated with the K – Pg boundary approximately 66 Ma. The figure illustrates the tree topology for the green plants with all known
WGDs indicated by bars. Red and blue bars represent 90% confidence intervals on dated tetraploidies and hexaploidies, respectively. Black bars represent WGD age
estimates from literature [21]. A possible WGD at the base of the monocots is indicated by a dashed bar, because its exact phylogenetic placement remains unclear
[9]. The WGD for Populus trichocarpa and the one shared by M. domestica and P. bretschneideri are corrected WGD age estimates based on fossil minimum
boundaries and/or other dating studies [21]. Branch lengths are truncated after 150 Ma to allow a better overview. Figure adapted from Vanneste et al. [21].
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distribution by attracting vertebrate frugivores for long-

distance seed dispersal, and hence increases plant success [36].

Specialization of the fleshy fruit for particular (groups of) verte-

brates may also enhance speciation [37]. Based on the recently

published genome of tomato (Solanum lycopersicum), a

genome triplication event in the Solanaceae shared with

potato (Solanum tuberosum) was firmly established [38] and

dated at the K–Pg boundary (figure 1). Many new gene

family members with important fruit-specific functions were

created through this WGD. Figure 2a illustrates several genes

in the fruit-ripening control network that are paralogues with

different physiological roles generated through the genome

triplication. These include, for instance, the transcription

factors and enzymes necessary for ethylene biosynthesis

(MADS1/RIN, CNR and ACS2/ACS6), red light photoreceptors

influencing fruit quality (PHYB1/PHYB2), and also some

effector genes mediating lycopene biosynthesis (PSY1/PSY2)

that control fruit pigmentation. Endogenous ethylene receptors

(ETR3/ETR4) created by the eudicot-wide genome duplica-

tion also participate in this network. Similarly, fruit texture is

controlled in part by over 50 genes that encode proteins

involved in modification of cell wall structure and compo-

sition, and show differential expression during fruit

development and ripening. Figure 2b, for instance, illustrates

the expansion, through genome triplication and subsequent
tandem duplications, of a family of xyloglucan endotransglu-

cosylase/hydrolases (XTHs) involved in determining fruit

texture. Differential loss between tomato and potato of one of

the triplicated members, XTH10, suggests that genetic special-

ization, and hence diversification between the different

members of the Solanaceae, was facilitated by the triplication

event [38]. It should however be noted that fleshy fruits

exist in many different plant lineages, many of which are

not marked by a specific polyploidy, emphasizing that the

Solanaceae-shared WGD contributed several genes that were

later incorporated into more elaborate fleshy fruit develop-

ment, so that the latter represents an ‘elaboration’ rather than

a true ‘innovation’ [2].
(ii) Rhizobial nodulation
A common feature of most papilionoid legumes is rhizobial

nodulation, the formation of specialized organs called root

nodules, which host nitrogen-fixing rhizobial symbionts.

Nodulation is a biological innovation that allows growth on

nitrogen-deprived soils, because plants receive fixed nitrogen

from their symbionts, in return for a steady supply of carbon

and energy sources [39]. Specialization for different rhizobial

symbionts may also have aided papilionoid speciation [40].

Analysis of the genome sequence of Medicago truncatula

http://rstb.royalsocietypublishing.org/
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Figure 2. The Solanaceae-specific genome triplication contributed to the evolution of the tomato fruit. (a) Illustration of the fruit-ripening control network. The
upstream transcriptional regulators MADS-RIN and CNR, in combination with the enzyme ACC synthase (ACS), control the production of the ripening hormone ethyl-
ene. Ethylene receptors (ETR) drive expression changes in several output genes, including phytoene synthase (PSY), which is the rate-limiting step in carotenoid
biosynthesis. Light influences fruit pigmentation through an ethylene-independent pathway mediated by phytochromes (PHY). Several key component paralogous
gene pairs (MADS1/RIN, PHYB1/PHYB2, ACS2/ACS6, PSY1/PSY2) were generated by the genome triplication (T, red circle), whereas ETR3/ETR4 was created by the core
eudicot shared hexaploidy (g, black circle). (b) Illustration of the expansion by both genome triplication (T, red circle) and tandem duplications of a family of
xyloglucan endotransglucosylase/hydrolases (XTHs), which control fruit-ripening through modification of cell wall structure and composition. Figure adapted
from Sato et al. [38].
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confirmed that the papilionoid-shared WGD, also located

at the K–Pg boundary (figure 1), has played an important

role in the evolution and elaboration of rhizobial nodulation

[41]. Nodulation is initiated when the plant signalling sys-

tem comes into contact with specific bacterial Nod factors,

which in papilionoids evolved a distinctly nodulation-specific

function [42]. Analysis of the M. truncatula genome showed

that both the Nod factor receptor NFP and transcription

factor ERN1 have paralogues, LYR1 and ERN2, respectively,

which originated through the papilionoid WGD. Figure 3

illustrates that both gene pairs show divergent expression

patterns, reflecting functional specialization. NFP and ERN1
are expressed predominantly in the nodule and are known

to be active in nodulation [43], whereas LYR1 and ERN2
are highly expressed during mycorrhizal colonization. This

suggests that these nodulation-specific signalling components

are derived from more ancient genes originally functional

in mycorrhizal signalling that evolved new transcriptional

functionality after the papilionoid WGD [41]. Additional

support for this conclusion comes from the observation

that the orthologue of NFP in a nodulating non-legume out-

group, Parasponia andersonii, functions both in nodulation

and mycorrhizal signalling [44]. Interestingly, a nodulating

legume outgroup that did not share the papilionoid WGD,

Chamaecrista fasciculata, exhibits ancestral nodule characteris-

tics in comparison with most nodulating papilionoids [45].

Parasponia diverged somewhere between 100 and 120 Ma
from the papilionoids [46], whereas Chamaecrista diverged

approximately 60 Ma from the papilionoids [45]. Independent

of whether their last common ancestor could already perform

nodulation or whether this trait evolved independently in

both lineages, this would suggest that the ability for advanced

nodulation characteristics was not able to evolve for about

40–60 Ma, whereas it did so very rapidly after the papilionoid

WGD [45]. This emphasizes that although the papilionoid

WGD was not an absolute prerequisite for the evolution

of nitrogen-fixing nodulation, it most likely facilitated the

development of several elaborate papilionoid nodule forms.

To assess the contribution of the papilionoid WGD to

M. truncatula nodulation in more detail, Young et al. [41]

also investigated the expression of 618 homeologous gene

pairs from six different organs based on RNA-seq data for

one or both homeologues, to determine the number of genes

showing organ-enhanced expression (defined as having

expression in a single organ that is at least twice the level in

any other). A large fraction of homeologues demonstrated

organ-specific enhanced expression. Among homeologous

gene pairs with nodule-enhanced expression, a single paralo-

gue was nodule-enhanced in 43 of 51 gene pairs, with the

other eight gene pairs showing nodule-enhanced expression

for both gene pairs. Of 142 transcription factors derived from

the papilionoid WGD for which RNA-seq data was available,

11 showed such enhanced nodule expression. These results

indicate that many homeologous genes, in particular signalling

http://rstb.royalsocietypublishing.org/
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Figure 3. The papilionoid genome duplication contributed to the evolution of nodulation. Paralogues created by WGD, (a) NFP and LYR1, and (b) ERN1 and ERN2,
display contrasting expression patterns, suggesting functional specialization. NFP and ERN1 are expressed predominantly in the nodule, whereas LYR1 and ERN2 are highly
expressed during mycorrhizal colonization. The average transcript levels of three replicates are shown, scaled by dividing each data point by the maximum mean
transcript level across all experiments. HPI, hours past inoculation; DPI, days past inoculation; DAP, days after pollination. Figure adapted from Young et al. [41].
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components and regulators, were retained after the papilionoid

WGD and gained specialized roles in nodulation afterwards.

However, some other nodule-related genes were found to

derive from the core-eudicot-specific hexaploidy. This confirms

a more complex model wherein the capacity for primitive

interaction with new symbionts evolved quite early, derived

from the existing mycorrhizal machinery, explaining the evol-

ution of nodulation in multiple plant lineages [39,47], after

which the papilionoid WGD allowed the creation of additional

genes that were incorporated into the development of more

advanced nodulation characteristics [41]. A recent integra-

ted comparative genomic approach based on the sequenced

genomes of four papilionoid species (M. truncatula, Lotus
japonicus, Glycine max and Cajanus cajan) supports this by

demonstrating that many of the approximately 25% of WGD-

derived duplicate pairs that have been retained, show high

levels of expression divergence and function in different

processes required for successful nodulation [48].
(b) Speciation
The previous examples of biological innovations originat-

ing through the retention of WGD duplicates suggest that

WGDs, through assisting biological innovations and diversi-

fications, might also facilitate speciation. For instance, as

stated previously, specialization for interactions between

http://rstb.royalsocietypublishing.org/
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particular vertebrate frugivores for seed dispersal in fleshy

fruits or with specific rhizobial symbionts in nodula-

tion, might aid speciation. However, the question remains

whether WGD itself can also actively promote speciation.

Some of the WGDs associated with the K–Pg boun-

dary (figure 1) pre-date extremely successful plant lineages

characterized by species radiations following the WGD

event. These include the Brassicaceae (approx. 3700 species),

Poaceae (approx. 10 000 species), Asteraceae (approx. 23 600

species), Solanaceae (approx. 2460 species) and Fabaceae

(approx. 19 500 species). Many of these, however, have a

species-poor sister group that shared the WGD event,

which led to the development of the WGD-radiation lag

time model that emphasizes that the success of these plant

families should be viewed in the light of their specific evol-

utionary routes taken [49]. Even the limited set of species in

figure 1 demonstrates that many present-day plant families,

such as the Cucurbitaceae, represented by Cucumis melo,

Cucumis sativus and Citrullus lanatus, did not undergo any

WGD in the past approximately 100 Myr. Using the number

of species as a simple, albeit admittedly crude, measure for

success, this family of about 950–980 species can also be

considered fairly successful [50]. Alternatively, some plant

families with a palaeopolyploid history, such as the

Nymphaeaceae, have arguably not been very successful in

terms of species radiation, counting only around 70 species

[51]. Such observations emphasize the importance of ecological

opportunity for realizing plant evolutionary potential,

irrespective of polyploidization [2,49,52,53].

Nevertheless, the success of many plant families that have

undergone a WGD suggests that their strong diversification

may be ascribed, at least partly, to their polyploid ancestry. In

an attempt to gauge the effect of WGD on speciation, Soltis

et al. [3] tested whether such post-WGD clades displayed

higher diversification rates, while accounting for the confound-

ing effects of extinction. Although the results were considered

preliminary, owing to the lack of reliable genomic data for

palaeopolyploidy in combination with insufficient taxon sampl-

ing to place WGDs confidently on plant family phylogenies, a

highly statistically significant relationship between diversifica-

tion and WGD was found for four of the five aforementioned

successful plant families. The fifth plant family, the Asteraceae,

was not considered, and a statistical relationship hence remains

untested. It should however be noted that the latter constitutes

the single largest present-day angiosperm family [54].

The molecular mechanisms that might promote speciation

after WGD are still not very well understood. One often-

quoted mechanism is reciprocal gene loss (RGL), the genetic

isolation of separated populations through loss of different

gene copies that lead to incompatibilities when the popu-

lations encounter each other again [55,56]. Through WGD, a

very large pool of loci becomes available simultaneously for

divergent resolution between subpopulations, which could

quickly result in reproductive isolation if essential genes are

involved. Scannell et al. [57] demonstrated that the pattern

of duplicate gene pair loss differs at 20% of all loci between

three different yeast species that shared a WGD. Similarly,

about 8% of ancestral Tetraodon and zebrafish loci were sub-

jected to RGL after the teleost fish WGD [58]. For plants,

the situation is less clear. Schnable et al. [59] separated the

two subgenomes of modern grasses derived from the WGD

shared by the Poaceae. In contrast to the aforementioned

studies in yeast and teleost fishes, strong evidence of RGL
between homeologues of the different subgenomes was lack-

ing, suggesting post-WGD RGL was unlikely to be a driving

force in the radiation of the grasses, although systematic

studies about RGL in plants are still missing.

However, genes do not necessarily need to get lost or

silenced, as other neutral scenarios after gene duplication

might also promote speciation. Many genes perform multiple

functions through differential expression at different develop-

mental stages and/or tissues. Duplication of such genes often

leads to subfunctionalization, the division of the subfunctions

over the two daughter copies [55,60]. Alternatively, genes can

have trace activity for a second function whose optimization is

constrained by adaptive conflicts with the primary function,

which can be resolved by optimizing the functions separately

in different paralogues after duplication [61]. Reproductive iso-

lation of such a population, for instance driven by geological

phenomena that lead to geographical barriers, could lead to

orthologues of the two isolated populations acquiring different

subfunctions. Although F1 hybrids in contact zones from

the two populations would develop correctly because each

(sub)function is performed by one of the genes from each

population, one-eighth of the F2 zygotes will lack one of the

(sub)functions, which could be lethal if such functions are

essential [62,63]. As for RGL, this effect would be exacerbated

in the case of WGD, which generates a much larger number of

duplicate loci that can be divergently subfunctionalized [2].

Lineage-specific subfunctionalization could therefore in

theory accelerate speciation, but this remains untested.
4. Both neutral and adaptive processes most
likely contribute towards enhanced polyploid
establishment under stressful conditions

Above, we discussed new evidence that seems to provide

further support for the association between plant palaeo-

polyploidizations and the K–Pg boundary, some of which

can be linked to particularly successful biological innovations

and increased diversification rates. The K–Pg boundary is

especially known for its associated extinction event, which

constitutes the last of the five major mass extinctions in the

Phanerozoic eon [64]. This cataclysmic event most likely

resulted from the combination of several factors such as

increased volcanism, greenhouse warming, and in particular

the bolide impact near Chicxulub (Mexico) [65], resulting in a

challenging unstable environment impairing the survival of

most living organisms [66]. The question remains, at a time

when an estimated 75% of all species went extinct [67], why

did many of the plant species we are all so familiar with prob-

ably undergo a WGD? Similar observations have been made

for present-day polyploids, which are often encountered in

unstable and stressful environments [68]. For instance, there

is an overabundance of recently formed polyploids in the

Arctic [69]. Below, we discuss two, not mutually exclusive, pro-

cesses that could help explain this pattern and the implications

thereof for plant evolution.

(a) The adaptive scenario
The adaptive scenario explaining polyploid success has been

explored extensively in the past decade [2,3,70–73], and will

therefore only be covered concisely here. This scenario is

mostly based on a characteristic often displayed by newly
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formed polyploids, namely transgressive segregation, i.e.

the formation of more extreme phenotypes in the resulting

hybrid populations compared with their diploid parents [70].

This becomes more pronounced as the two parental genomes

contributing to the polyploid become more diverged,

especially so in allopolyploids that result from the merger of

two different species, which may display strong hybrid

vigour (heterosis) by virtue of possessing novel allelic combi-

nations not found in either parent [74]. However, the exact

molecular mechanisms behind hybrid vigour are still largely

unknown [75], although it has been suggested recently that

cells might distinguish between parental alleles based on

their relative protein and mRNA stability, which therefore con-

serves energy otherwise required for removal of such unstable

products that can be used to promote growth and expression of

new favourable traits [76].

Irrespective of the exact molecular mechanisms, genomic

instability and gene expression changes soon after polyploid

formation may result in increased phenotypic variability of

the polyploids with respect to their diploid progenitors [2].

Genomic instability refers to the extensive structural changes

of the chromosomal DNA that typically take place in the

first few generations after polyploidization, such as fusions,

fissions, duplications, inversions, translocations and elimin-

ations [77], often coupled to mitotic and meiotic abnormalities

[78,79]. Gene expression typically changes markedly [80], in

conjunction with widespread epigenetic repatterning [81],

in the first few generations after polyploidization. These struc-

tural and expression changes have collectively been described

as genomic shock, and in the case of allopolyploids seem to

be attributable to both the hybridization process [82] and the

genome doubling itself, with the latter possibly having a calm-

ing effect [83]. Although these extensive changes often result in

decreased polyploid fitness and increased offspring sterility,

in the light of increased phenotypic variability, they can

also confer plasticity to the polyploid genome to allow quick

adaptation to new environments and changing conditions

[70,71,73,84,85].

Other potential adaptive advantages of newly formed poly-

ploids include the masking of deleterious recessive alleles

leading to increased genetic redundancy [86], network redun-

dancy on a larger scale [87] and possibly even an increased

capacity for phenotypic plasticity itself [88,89]. Polyploids also

often exhibit traits that promote their establishment through

mitigating the minority cytotype disadvantage, which is a

strong negative frequency-dependent selection on the poly-

ploid through a large proportion of ineffective matings with

the diploid progenitor majority cytotype [90]. Such traits

include the loss of self-incompatibility, which enables selfing,

and the gain of apomixis, which enables asexual reproduction.

Polyploidization is also sometimes associated with a shift from

annual to perennial habit, which opens up a longer time

window for successful mating. Lastly, their fast morphological

and/or physiological differentiation can enhance the number of

successful matings through sympatric niche separation from the

diploid progenitor population [73,91,92].
(b) The neutral scenario
A series of recent findings point to the possibility of a more neu-

tral scenario to explain the apparent association between

palaeopolyploidizations and the K–Pg boundary [21]. It has

been acknowledged for a long time that the formation of
unreduced gametes is the main mode of polyploid formation

in plants, but the low estimates of unreduced gamete production

in natural populations typically seemed too restrictive for the

establishment of polyploids [93,94]. Although the chance of

two unreduced 2n gametes meeting is very low, tetraploid

occurrence is most likely facilitated by a triploid bridge, the cre-

ation of an intermediate triploid stage through the combination

of an unreduced 2n and reduced n gamete [95]. Such triploids

often display large fertility and fitness defects; however, they

also produce enhanced levels of unreduced 3n gametes

that can form tetraploids through backcrosses with reduced

n gametes from the diploid progenitor population, and hence

alleviate the minority cytotype disadvantage [96,97]. Accord-

ingly, a recent general gametic modelling approach for

diploid–polyploid systems that predicts equilibrium ploidy fre-

quencies based on empirical estimates of unreduced gamete

formation, demonstrated that these low levels can be adequate

to explain a drift towards higher ploidy [98].

Another well-documented observation is that levels of unre-

duced gamete formation can be increased by external stimuli

such as stress and a fluctuating environment [94,99–104].

Temperature in particular has a pronounced effect on unre-

duced gamete formation. Increasing temperatures to extreme

levels in Rosa species resulted in more unreduced gametes

being produced through alterations in spindle formation

during meiosis II [105]. Similarly, inducing cold stress increased

unreduced gamete formation in A. thaliana through alterations

in post-meiotic cell plate formation and cell wall establishment

[106]. Although hybridization itself typically also increases the

levels of unreduced gamete formation in plants [107], tempera-

ture levels can potentially also enhance this hybrid trait, as

witnessed in some Brassica interspecific hybrids after cold treat-

ment [97]. Moreover, it became clear recently that the effect of

the environment on unreduced gamete formation is most

likely not limited to present-day plants. Increased levels of

fossil unreduced pollen were observed in the now extinct coni-

fer family Cheirolepidiaceae at the Triassic–Jurassic transition,

which corresponds to the fourth of the five major extinction

events [108]. Abnormal gymnosperm pollen [109] and lyco-

phyte spores [110] have also been reported during the

Permian–Triassic transition, corresponding to the third of

the five major extinction events.

Increased unreduced gamete production during times of

environmental stress and/or fluctuation could thus be an

important factor in explaining the apparent clustering of

palaeopolyploidizations at the K–Pg boundary [21]. It could

also explain why many present-day polyploids often are

more abundant in stressful environments, such as the Arctic

[69] or habitats created by anthropogenic disturbance [111].

For both the K–Pg boundary and present-day examples, the

association between increased polyploid establishment and

environmental stress and/or fluctuation would not require

any explicit adaptive advantage, but could be explained by a

neutral mechanism [99] such as increased unreduced gamete

formation. This is in agreement with modelling approaches

that predict increased replacement of diploids by polyploids

under a changing environment, without assuming any

a priori adaptive advantage of the polyploids [112]. The effect

of increased unreduced gamete production during environ-

mental stress and/or fluctuation is even expected to be

intensified through higher background extinction levels of

the diploid populations [34], increasing the overall relative

frequency of unreduced gametes to the total gamete pool,
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which would enhance the chance of successful unreduced

gamete matings.

Accumulating evidence for a more prominent role of

the neutral scenario does not however preclude a role for

the adaptive one. Figure 4 summarizes an intertwined situ-

ation wherein environmental stress and/or fluctuation drive

polyploid formation through increased unreduced gamete

production, after which adaptive processes act to ensure

polyploid establishment. Dependent upon specific circum-

stances, either the neutral or adaptive component could

carry more weight. The apparent association of palaeo-

polyploidizations with the K–Pg boundary [21], and

present-day polyploids with stressful habitats [69,111], in

combination with evidence that unreduced gamete formation

is a major route towards polyploidization [98] that may be

intensified through environmental stress and/or fluctuations

as witnessed at several large-scale extinction events [108], hints

at a strong role for the neutral component. There are however

many observations that also argue in favour of the adaptive

component [73]. Although one has to remain cautious with

generalizations about the distribution and prevalence of

recent polyploids, because many exceptions can be found

[113], some trends are apparent. For instance, recent polyploids

appear to have larger habitat distributions, suggesting they can

tolerate a wider range of ecological conditions [114–116]. Most

strikingly, they are less likely to be endangered and more likely

to be invasive on a worldwide scale compared with diploids

[117]. Such observations would be difficult to explain purely

through neutral mechanisms.

The genetic component of unreduced gamete production

merits some more attention. Traditional breeding studies estab-

lished that diploid gamete production is a highly heritable trait
that can be enhanced in as few as two to three cycles of recurrent

selection in species such as alfalfa [118] and red clover [119]. In

Arabidopsis, a surprisingly strong tolerance of gametes to both

trisomy and several other complex karyotypes exists [120],

whereas several genetic players that can influence unreduced

gamete production through their effect on the orientation of

the spindle apparatus in male meiosis have recently been ident-

ified [121], such as AFH14 [122], JAS [123] and AtPS1 [124].

Stress-induced altered functionality of these genetic com-

ponents may explain the effect of the environment on

unreduced gamete production [104]. These observations open

up the possibility that polyploidization might even constitute

an inducible evolutionary mechanism by which plants cope

with ecological disasters, much akin to the stress-inducible

mutator systems such as the SOS response in bacteria [125].

The latter is a transient response to stress and changing environ-

ments by means of a set of ‘evolution genes’ that decrease

replication fidelity and increase mutation rates to generate gen-

etic diversity upon which natural selection can act [126,127].

Such evolution genes are thought to undergo biological evol-

ution themselves through indirect selection, and their

presence in higher organisms has been hypothesized [128].

Because all extant angiosperms shared at least two rounds of

WGD [5], with an extra shared WGD at the base of the core

eudicots [6] and possibly also the monocots [9], recurring

WGD events [2–4] could have maintained residual heritable

genetic variation in diploid plants for the ability to produce

unreduced gametes and form polyploids in times of ecological

upheaval. Despite a genetic component, this does not need to be

necessarily under the direct control of any adaptive pro-

gramme, as it could just as well primarily be an ‘evolutionary

spandrel’ that received secondary functionality [129]. In any
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case, such a system could provide an alternative for the mutator

systems in bacteria, which would be less efficient in plants

owing to their smaller effective population sizes and longer

life cycles, but this remains currently entirely hypothetical.
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5. Enhanced establishment of polyploids at the
Cretaceous – Palaeogene boundary may have
paved the way for angiosperm success in the
Cenozoic

The neutral and adaptive processes described above offer

a framework for the apparent clustering of WGDs at the

K–Pg boundary, but fail to explain their long-term success

in terms of speciation and biological novelty. For all examples

we considered, it was apparent that the duplication of the

whole genome provided an increase in raw genetic material

on which evolution could work. In accordance with Ohno’s

classical models [130,131], the newly created gene copies

could undergo neofunctionalization (the creation of a new

function), subfunctionalization (the division of an ancestral

function or functions over the daughter copies), or be kept

for dosage amplification (the production of more of a

beneficial gene product) or any combination thereof as

explained by more complex population genetic models

[132]. Although the fate of most duplicated genes is in fact

loss through pseudogenization [1], WGDs provide a massive

number of contemporarily created gene duplicates, of which

only a small fraction seems to have contributed to some major

biological innovations and/or elaborations.

It has become increasingly clear that rather than just the

functional divergence of the coding regions and/or regulat-

ory sequences of individual genes, the rewiring of the

regulatory network containing these individual components

following WGD is of major importance [133,134]. A body

of literature exists demonstrating that regulatory and devel-

opmental genes in particular are retained in excess after

WGDs. This is most likely due to dosage-balance constraints,

i.e. selection against loss of individual components of com-

pletely duplicated macromolecular complexes and/or

pathways, because this would disrupt their overall stoichi-

ometry [135–139]. Retention of balance-sensitive duplicates

thus does not provide an immediate evolutionary advantage,

but results from the fact that their loss would lead to an

immediate disadvantage. In this respect, the retained regula-

tors may be considered an evolutionary spandrel [129,135],

which might later on have facilitated the evolutionary inno-

vations and/or diversifications observed in many of these

post-WGD lineages [2,3,140]. Selection to maintain dosage

balance eventually relaxes over time allowing functional

divergence in the context of the environment [138,141], so

that part of the duplicated network can be rewired to execute

novel functions [133]. However, the underlying mechanisms

are currently unclear. Gene duplication has been shown to

contribute to innovations even after prolonged periods

between the original duplication event and the origin of

novelty [142], suggesting that individual components of

these duplicated networks can undergo neo- and subfunctio-

nalization in accordance with Ohno’s classical models

[131,132] even long after the duplication event itself. Some

of these processes could have caused network-rewiring

events that could help explain the vast post-WGD success
observed in some of the plant families that experienced a

WGD at the K–Pg boundary.

There are many examples that support the role of network

rewiring over time. The ability for anaerobic fermentation in

yeast has been associated with global rewiring of its tran-

scriptional network after genome duplication, involving

changes in the promoter regions of several genes such as

the loss of specific regulatory motifs [143,144]. Similarly, the

abundance of teleost fish pigmentation synthesis pathways

has been attributed to the teleost WGD through rewiring in

combination with subfunctionalization of existing pathways

[145]. In plants, the gamma hexaploidy at the base of the

core eudicots resulted in expansion of MADS-box gene

families, key regulators of reproductive development, which

through rewiring of their interaction network in combination

with neo- and subfunctionalization, acquired roles in several

major plant developmental processes [8,146].
6. Conclusion
Advances in plant genomics, molecular sequence divergence

estimation and high-performance computational solutions

allow us to address questions about the role of genome dupli-

cation that were previously impossible to investigate. It

should be emphasized that the fate of most newly formed

polyploids appears an evolutionary dead end through

outcompetition by their diploid specialized progenitors

[147–149] because of a whole range of associated negative

effects such as minority cytotype exclusion [90], severe meio-

tic and mitotic abnormalities [150] and ploidy-associated

genomic instability [79]. Nevertheless, it appears that there

exists a strong link between environmental stress and/or fluc-

tuation and genome duplication, as currently supported by

both present-day polyploids and palaeopolyploids at the

K–Pg boundary. Could unreduced plant gamete production

have increased polyploid formation at the K–Pg boundary?

Alternatively, can the apparent prevalence of polyploids at

the K–Pg boundary be explained by their increased adapta-

bility? Or do we observe the signature of another mechanism

and/or pattern that currently remains elusive, perhaps because

both dating of such ancient events and making generalizations

about current polyploids remain particularly problematic? In

any case, this polyploid heritage may afterwards have fuelled

evolution of biological innovations and speciation in the context

of newly encountered conditions during the Cenozoic, through

extensive network rewiring and functional diversification of

regulatory and developmental genes that were originally

guarded against loss through mechanistic dosage-balance

constraints. Polyploids in some sense thus seem reminiscent

of the ‘hopeful monsters’ advocated by Goldschmidt [151]

(M. Freeling 2009, personal communication), at least at the

genomic level, whereas their full potential at the phenotypic

level can only be realized given time and the right conditions

[52]. It thus appears that the role of the environment in both

polyploid establishment and their evolutionary success

constitutes an important aspect that merits further investigation.
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